COME SCEGLIERE IL SISTEMA DI CIFRATURA PIÙ ADATTO?

<u>Sistemi di cifratura a</u> <u>CHIAVE SEGRETA (simmetrica)</u>

- + molto veloci
- + chiavi corte
- necessaria fiducia da e verso chi condivide la chiave
- è consigliabile cambiare la chiave ad ogni sessione, o comunque più spesso possibile
- Il numero di chiavi cresce velocemente col numero di utenti: una chiave per tutte le possibili coppie di utenti

<u>Sistemi di cifratura a</u> <u>CHIAVE PUBBLICA (asimmetrica)</u>

- * solo la chiave privata va mantenuta segreta
- una coppia privata/pubblica può rimanere invariata per più sessioni
- il numero di chiavi cresce meno in funzione del numero di utenti (una coppia per ogni utente)
- più lenti
- grandezza (in bit) delle chiavi almeno di un ordine di grandezza superiore

NUMERO DI UTENTI	NUMERO DI CHIAVI IN SISTEMI A CHIAVE PUBBLICA	NUMERO DI CHIAVI IN SISTEMI A CHIAVE PRIVATA
10	20	45
100	200	4590
1000	2000	455900
10000	20000	45559000

IN COMMERCIO

Tra gli algoritmi a chiave simmetrica più diffusi in commercio troviamo l'AES (Advanced Encryption Standard), standard pubblico a partire dal 2001. Il suo principale impiego risiede nei protocolli di scambio sicuro (es. FTPS, HTTPS) per il flusso dei dati con le pagine web.

Tra gli algoritmi a chiave asimmetrica, il più diffuso è l'RSA (Rivest, Shamir, Adleman), che prende il nome dai suoi ideatori. Questo viene spesso utilizzato per crittografare una chiave simmetrica da inviare a una seconda parte che l'ha richiesta. Riferendosi sempre al protocollo <u>HTTPS</u>, ad esempio, lo condivisione della chiave di sessione privata (<u>AES</u>) avviene proprio tramite l'algoritmo <u>RSA</u>.

CHIAVE PUBBLICA: FIRME DIGITALI

Oltre che per garantire la <u>confidenzialità</u> dei messaggi, le tecniche di cifratura a chiave pubblica possono essere utilizzate per realizzare la firma digitale. In tal caso il mittente utilizzerà la sua chiave privata per cifrare l'informazione, legando così la sua identità all'informazione trasmessa.

RIFERIMENTI

http://www.c3t.it/projects/awareness/articoli&brochur e/crittografia/

CIFRA LE TUE COMUNICAZIONI

Scopri cos'è la crittografia, perché è importante e come puoi usarla per proteggere le tue informazioni e le tue comunicazioni.

CRITTOGRAFIA

La **crittografia**, letteralmente "scrittura segreta", è l'arte, oggi la scienza, di nascondere i messaggi.

Nasce con lo scopo primario di garantire la <u>confidenzialità</u> dei dati, ma si è successivamente estesa anche ad altri scopi, come ad esempio quello di garantire l'<u>integrità</u> dei dati.

Essa permette di:

- impedire modifiche non autorizzate mentre i dati sono memorizzati;
- 2. garantire che i dati trasmessi non siano comprensibili a chi li intercetti.

CRITTOGRAFIA A CHIAVE SEGRETA

È, storicamente, la prima forma di crittografia, nata per comunicare:

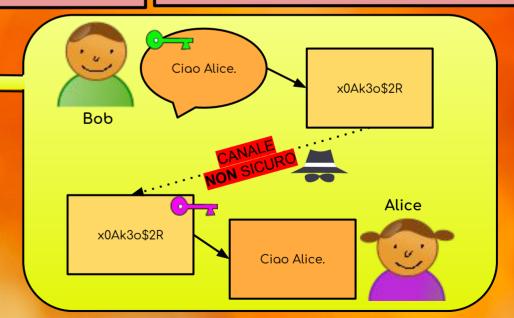
- La chiave di cifratura è <u>uguale</u> alla chiave di decifratura (entrambe le parti la conoscono);
- implica che gli utenti abbiano la possibilità di scambiarsi la chiave in modo assolutamente confidenziale, evitando che questa possa essere intercettata.

L'antico "Cifrario di Cesare", che faceva corrispondere ogni lettera a quella di tre posizioni successive, è un esempio di crittografia a chiave segreta, in cui la chiave è proprio il "valore di mappatura" pari a tre.

CRITTOGRAFIA A CHIAVE PUBBLICA

Nata agli albori degli anni 70, è tutt'oggi un tema di ricerca molto attuale:

- La chiave di cifratura è <u>diversa</u> dalla chiave di decifratura;
- ogni utente ha una chiave privata (che conosce solo lui) e una chiave pubblica (che conoscono tutti);
- per cifrare il messaggio Bob usa la chiave pubblica di Alice e lo rinchiude in una "cassaforte", solo Alice potrà aprire la cassaforte con la sua chiave privata.


É usata principalmente per **scambiare chiavi** per <u>sessioni private di comunicazione</u> e per realizzare **firme digitali**.

L'idea è quella di usare delle chiavi di cifratura per rendere incomprensibile (a chi non conosce tali chiavi) una certa informazione.

Dipendentemente dal fatto che le chiavi verde e viola (in figura) siano o meno la stessa chiave, si distinguono i due principali paradigmi in crittografia per cifrare una comunicazione:

- crittografia a chiave segreta (crittografia simmetrica);
- crittografia a chiave pubblica (crittografia asimmetrica).

CANALE NON SICURO: qualsiasi mezzo di trasmissione in cui possibili intrusori potrebbero reperire l'informazione trasmessa.

